散热器散热效率计算公式-散热器如何计算温度

一、实验目的

(一) 掌握热媒为水时散热器热工性能的实验方法。

(二) 通过热工性能实验确定散热器散热量或传热系数与计算温差的关系,并求出其金属热强度值。

二、实验原理

(一) 散热器的散热量

Q=a(tp-ta)n=a△tb W (1—1)

式中 tp——散热器进出口热媒平均温度,℃;

tp=(tg+tc)

tg——散热器进口处热媒温度,℃;

tc——散热器出口处热媒温度,℃;

a、b——实验确定的系数,主要与散热器构造热媒参数及安装方式等有关;

ta——检测小室基准点空气温度,℃;

(二) 热媒输入散热器热量

Q=G(hg-hc) W (1—2)

式中 G——散热器热媒平均质量流量,kg/s;

hg——相应于热媒进口温度tg的焓,j/kg;

hc——相应于热媒出口温度tc的焓,j/kg;

(三) 散热器传热系数

K= △tn-1 W/m2℃ (1—3)

式中 F——散热器散热面积,m2。

(四) 散热器金属热强度

g= W/kg?℃ (1—4)

式中 △t——计算温度差,一般可取△t=64.5℃;

g——散热器质量,kg。(无水状态)

由上可见,散热器热工性能实验测量的参数有tg、tc、ta、G、F、g。

三、实验装置

散热器实验装置主要有下列各部分组成:

(一) 风冷闭式检测小室空调系统

如图1.1所示。它主要由安装被检测散热器的闭式小室6及其套间5,用于维持小室空气温度稳定的空调系统(包括送回风系统、用于加热和冷却空气的电加热器系统和制冷系统等)组成。

图1.1风冷闭式检测小室空调系统

1 风机 2 风管 3 电热器 4 多叶送风口 5 小室套间 6 检测小室 7 回风口

8蒸发器 9 膨胀阀 10 压缩机 11 冷凝器 12 冷却塔 13 循环水泵 14 供水阀 15 补水阀

(二) 散热器热媒循环系统

如图1.2所示。它主要由低位水箱13、循环泵1、高位水箱2、电热锅炉14、散热器6及换向器8等组成。

图1.2 散热器热媒循环系统

1 水泵 2 高位水箱 3 水位计 4 温度计 5 电热器 6 散热器 7 流量计

8 换向器 9 取样器 10 冷却水管 11 量杯 12 天平 13 地位水箱 14 锅炉

(三) 散热器进出口热媒温度、检测小室空气温度检测系统及温度控制系统。

(四) 热媒冷却及称量系统。

四、实验方法

(一)实验条件

实验必须在稳态条件下进行,即在等时间间隔(一般间隔不超过10分钟)中至少有六次连续测量值,每次测量值与其平均值元差不大于下列范围时即为稳态。

对于热媒系统

水量G ±2%

温度t ±0.2%

热量Q ±1%

对于检测小室

内壁面中心温度 ±0.3%℃

基准点温度 ±0.1%℃

安装散热器那面墙表面温度 ±0.5%℃

(二)参数测量

1、 温度测量

本实验利用四线制铂电阻温度计测量温度。先由8840A数字多用表测得电阻值,然后再根据计算公式(或查表)求出温度值。

2、 流量测量

采用质量法测量。用MP—4000型电子天平称出取样流体的质量,根据取样的间隔时间求出热媒的质量流量。

3、 温度与流量的测量范围

工况 流量G

进水 温度tg

出水 温度ta

空气 温度ta

标准G kg/h

95±2℃

75±2℃

20±1℃

G kg/h

80±3℃

tc±3℃

20±1℃

G kg/h

65±5℃

tc±5℃

20±1℃

由tg=95±2℃,tg-tc=20±2℃确定流量G,保持不变,分别测出tg=80±3℃、65±5℃相应的tc值。学生进行实验时,壁面参考点的温度可不测量。

4、 温度与流量测量精度

tg、tc、ta ±0.1℃

G ±0.5%

壁面温度 ±0.2℃

5、 散热器散热面积及质量测量

五、实验步骤

(一)系统启动前准备工作(由教师完成)

1、安装散热器;2、系统充水、排气;3、配点柜、控制接通电源;4、仪器仪表的调整。

(二)热媒(水)循环系统启动(见图1.2)

1.开启循环水泵1、流量计7浮子漂起;

2.启动低位水箱13和锅炉14的电热器5。

(三)检测小室空调系统启动(见图1.1)

1.启动风箱1及冷却塔风机16;

2.打开冷凝器11的供水阀14和循环泵13,待冷却水系统充满水后关闭阀14,打开冷却塔补水阀15;

3.开启制冷机并观察高、低压压力表的指示值;

4.开启空气加热器。

(四)自动控制系统投入

自控系统必须在热媒系统及检测小室空调系统正常运行后才能投入。

1、散热器入口水温控制

由电子调节器TA—012控制低位水箱13的电加热器5,及电子调节器TA—092和可控硅电压调整器ZK—03控制锅炉14的电加热器5,实现对入口水温的控制。

2、检测小室基准点空气温度控制

由XQCJ—400型自动平衡记录调节仪和可控硅电压调整器ZK—03等控制送风加热器了,实现对小室基准点空气温度的控制。

(五) 水量控制

靠手动调节阀门实现。

(六) 测量

当系统中温度、流量达到稳定后便可读数记录。每个工况连续读数1小时,每间隔10分钟读一次数。

(七) 停车

正好与启动系统的顺序相反。

1、加热器控制系统

先停电热器的控制仪表,后按下有关的控制按扭。

2、检测小室空调系统

先按下制冷机停止按扭,并随即关闭制冷机的吸气阀,待6~10分钟后,关闭风机及冷却水系统。

3、按下循环水泵停止按扭。

六、实验数据整理

(一)

根据测得的数据用*小乘法求(1—1)式中的系数a和b。

(二)求出热传系数K的计算式。

(三)求出△t=64.5℃时散热器金属热强度值q。

(四)计算△t=64.5、60.0、55.0℃的散热量Q,并与有关标准中给出的散热量进行比较。

散热器散热面积如何计算

散热器的表面积计算:

S = (△T*a))

(平方米)

式中

△T——散热器温度与周围环境温度(Ta)之差(℃);

a——传导系数,是由空气的物理性质及空气流速决定的。

a的值可以表示为:

A = Nu*λ/L

式中λ——热电导率由空气的物理性质决定;

L——散热器海拔高度();

Nu——空气流速系数。

Nu值由下式决定

Nu = * [(V/V1)^(1/2)]*[Pr^(1/3)]

式中 V——动黏性系数,是空气的物理性质;

V1——散热器表面的空气流速;

Pr——参数(见表1)。

温度t/℃

动黏性系数

热电导率

Pr

0

20

40

60

80

100

120

散热器选择的计算方法

一,各热参数定义:

Rja——— 总热阻,℃/W;

Rjc———器件的内热阻,℃/W;

Rcs———器件与散热器界面间的界面热阻,℃/W;

Rsa——— 散热器热阻,℃/W;

Tj——— 发热源器件内结温度,℃;

Tc———发热源器件表面壳温度,℃;

Ts——— 散热器温度,℃;

Ta——— 环境温度,℃;

Pc———器件使用功率,W;

ΔTsa ——— 散热器温升,℃;

二,散热器选择:

Rsa =(Tj-Ta)/Pc - Rjc -Rcs

式中:Rsa(散热器热阻)是选择散热器的主要依据。

Tj 和Rjc 是发热源器件提供的参数,

Pc 是设计要求的参数,

Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X接触材料导热系数)。

(1) 计算总热阻Rja:Rja= (Tjmax-Ta)/Pc

(2) 计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc

ΔTsa=Rsa×Pc

(3)确定散热器

按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

散热器热阻测试中描述正确的是

一般的我们把温升控制在30度以内,一般的结温不超过85度,我们建议不超过75度,依次推算,按热阻10度/w,热沉得温度为65度,到达散热器的表面温度为55度左右,所以温升为30度以内,以上推算为在25度环境温度下进行计算。

采暖散热器散热量计算时以四柱760型为例,室内温度18℃,散热器散热量的计算?

以下是散热器热阻测试描述正确的公式

参数定义:

Rt———总内阻,℃/W;

Rtj———半导体器件内热阻,℃/w;

Rtc——半导体器件与散热器界面间的界面热阻,C/W;Rtf-—散热器热阻,℃/W;

Tj-半导体器件结温,℃;

Tc-半导体器件壳温,℃;

Tf-散热器温度,℃;

Ta-环境温度,℃;

Pc———半导体器件使用功率,W;Tfa ———散热器温升,℃;散热计算公式:

Rtf =(Tj-Ta)/ Pc - Rtj -Rtc

散热器热阻Rff 是选择散热器的主要依据。Tj和Rtj是半导体器件提供的参数,Pc是设计要求的参数,Rtc 可从热设计专业书籍中查表。

(1)计算总热阻Rt:

Rt= (Tjmax-Ta)/ Pc

(2)计算散热器热阻Rtf或温升△ Tfa:

散热器是热水(或蒸汽)采暖系统中重要的、基本的组成部件。热水在散热器内降温(或蒸汽在散热器内凝结)向室内供热,达到采暖的目的。散热器的金属耗量和造价在采暖系统中占有相当大的比例,因此,散热器的正确选用涉及系统的经济指标和运行效果。

散热系数如何计算

这个问题,你要这么理解,大家都知道,传热是有温差引起的,温差越大,传热越大,90/70 时平均温差为62,,80/70温差为57,所以后面的传热量确实会要大些。 当然后面一组要有相同的效果,流量当然要加大1倍否则温降会要变大;散热器的传热量,温差的影响要比流量的影响大的多,流量的变化也引起传热量的变化,也是考虑的修正的系数之一,但是影响很小。

钢制板式散热器散热量怎么算?

如何能正确的确定散热器的传热系数K值的实验,对国际化标准组织ISO规定:要应在一个长( 4±0.2 )m×宽( 4±0.2 )m×高( 2.8±0.2 )m的封闭小室内,保证室温恒定下进行,暖气片应无遮挡,敞开设置。国际规定对于暖气片的传热系数是表示:当暖气片内热媒平均温度与室内空气温度的差为1℃时,每 ㎡散热面积单位时间放出的热量。单位为W/㎡.℃。 散热量单位为W。传热系数与散热量成正比。

一般来说:影响铸铁暖气片传热系数的最主要因素是热媒平均温度与室内空气温度的温差△T,暖气片的材质、几何尺寸、结构形式、表面喷涂、热媒温度、流量、室内空气温度、安装方式、片数等条件都会影响传热系数的大小。

对于散热器性能检测标准工况(当△T=64.5℃时),即:热媒进口温度95℃,出口温度70℃,空气基准温度18℃。对于暖气片热工性能均经过国家暖气片质检中心或清华大学建筑环境监测中心按上述标准进行检测,其标定的散热量(W)即在△T=64.5℃时标准工况下的检测结果才是合格的暖气片产品。

散热量是用户采购暖气片时必须要了解的数值。在其他因素都相同的条件下,散热量越大的暖气片,就越暖和;散热量越小,使用时采暖效果就相对差一些。常见的柱式暖气片,散热量很好了解,通常是以单柱来计算。如果想要房间更暖和,多加两柱暖气片就可以实现。那钢制板式暖气片的散热量是多少呢?其实,钢制板式暖气片的规格不同,决定了散热量不同。下面跟随金旗舰旗哥一起来了解一下吧。

关键词:钢制板式散热器散热量

从钢制板式暖气片的规格上来看,高度分为:300、600、900,宽度从600-2600不等。高度和宽度都可以根据用户需求来定制。不同高度和宽度的暖气片,散热量也不相同。例如高300mm,宽600mm的钢制板式暖气片,它的散热量是531;而同等高的钢制板式暖气片,宽度为1000mm,散热量是883。

除高度和宽度外,材质的薄厚、质地,工艺也是影响散热量的因素。品质精良、薄厚均匀的材质,导热快,散热量也大。而一些粗制滥造的产品,为了压低成本,选择的材质质量也相对较差,散热量也小。

钢制板式暖气片主要通过内部翅片来散热,翅片设计造型便于热空气流动,再加上顶端的盖板网罩设计,让热空气畅通无阻,散热量也大大提高。反之,如果钢制板式暖气片没有这些细致入微的工艺和设计,散热量也会大打折扣。

金金提醒,在采购钢制板式暖气片时,一定要看好参数表,多家对比,在同等宽和高的条件下,选择散热量最大的一款。

暖气片在标准情况下,金金在这里把每个型号的暖气片配置都来介绍一下。

600mm高60管双柱的暖气片的散热量是128W,一平方米的的空间所需的散热量是90-110W这样算起来600mm高的能带一个平左右。购买暖气片暖气片,首先要明确家里的采暖面积,有多少房间,每个房间是多少平,然后具体介绍自家的供暖情况,比如水质问题,所在地区气候问题,家住几楼,是否有太阳照射。然后如果选适合的材质,一般集中供暖用钢制的比较多。

针对具体材质的型号做选择。选择型号,其实就是选择样式,找到你喜欢的样式。

选择适合的高度,而每个型号的暖气片都有相对应测试出来的散热量,利用这个散热量来除以一个特定的数字,得到其相对应的每平米供热面积。

用你的面积来除以这个每平米的供热面积就得到所需要的暖气片片数,然后这个片数组成一组即可满足这个房间的供热采暖。由此可见,不同的品牌、不同的材质、不同的型号的暖气片,其供热面积是不同的,所以大家在购买前,选好需要的产品型号才能算片数。