冷板散热器设计方案-冷板散热器设计

大众帕萨特在中保研的碰撞测试中,把A撞弯了,结果4月份的销量又回到1.5万辆的水平,不禁让人想起,到底汽车的安全重不重要呢?相比传统汽车而言,纯电汽车同样面临问题,不止碰撞,还有电池的安全性能。

不知你有没发现,大概从4月份开始,直至秋天来临之前,电动车自燃的新闻基本都集中在炎热的夏天,无论在充电期间还是在地下停车场,纯电汽车总会“热气上火”,其中58%的起火原因都来自电池,对于电动车而言,解决电池安全甚至先于碰撞。

一般三元锂电池在纯电汽车中用得最多,原因当然是能量密度大,满足消费者长里程的需求。目前它的最大能量密度为180Wh/KG,对于现阶段续航达到500km甚至700km的纯电车而言,电池不单单铺满了整个座舱,而且还挤得密密的。相比之下,刚推出不久的广汽丰田C-HR EV就显得有些“另类”,续航里程400公里且风冷电池,难道丰田造电动车还未入状态?

以三元锂电池车为例,为了保证电池合适的工作温度,一般以水冷散热作为冷却方式,也就是在电池包上下加入水冷板/管,冷却液在里面流动,带走电池因工作发出的热量,其原理跟发动机的冷却系统差不多,较热的冷却液通过散热器和风扇把温度降低,再次投入到冷却工作中,形成循环。无论新势力还是传统车厂,水冷散热是主流,但丰田的“另类”在于电池使用风冷。

水冷是指电池内部的结构,将冷却水变冷还需要自然风降温,但是丰田的风冷电池却并非使用自然风,确切来说,丰田C-HR EV的电池是通过空调冷却,根据电池温度为其降温。升起底盘、卸下盖板,放在前方的压缩机除了有管路通入车内,也有管路连接电池组,每条支路都有膨胀和截止组合阀,用于相互独立地控制冷却功能,通过电池内部的鼓风机吹入管道,事实上,类似的方法在宝马i8/i3上也是如此。

如果把C-HR EV的电池组打开,便发现空调主管路包围着这个电池组边缘。即使发生碰撞,管路也能起到一定的缓冲作用,而且与其他电动车相比,电池分布比较疏,甚至比i8留有更多的散热和布置线路的空间,以提高空调风的散热效率,同时对于安全性能也颇有好处,无论纵向还是横向都留有碰撞的溃缩空间。

电池风冷的好处在于结构比较简单,相比水冷来说,不存在漏液的风险,也避免了冷板的保养维修,重量更轻。不过两者也并非绝对的孰优孰劣,只是侧重点不一样而已,如果你看过特斯拉的电池组便清楚,那是沙丁鱼式的电池排布,排列紧密,电动车的续航里程高,而丰田C-HR EV续航只有400公里。

大家都知道,大众销量一直高企,原因不只是品牌因素,更多来自终端的价格优惠,我相信如果帕萨特将北美的标准拿到国内,CIASI的碰撞测试也不可能把A住撞弯,气囊更不会躲猫猫,但终端优惠必然减少。成本与安全怎样割舍?里程与电池安全如何平衡?似乎里面的道理是相通的。

目前电动车的续航里程显然有非常大的进步,从以前的200km到现阶段的700km,不少消费者也以此作为买车的先决条件,但是从社会的众多例子看来,电动车的安全更值得大家关注,C-HR EV的电池设计显然与主流不同,考虑安全的因素远大于追逐续航的数字,或者这就是传统日系车企的工程师思维吧。

事实上,C-HR EV对安全的考虑还不止电池,例如在电池下方增加了别家都没有的钢板,通过粗壮的螺栓固定,一方面保护电池免受冲击,同时提高车身刚性与抗撞击的能力。另外,前方的机舱内增加了钢铁支架并且与车身纵梁连接,支撑动力总成外,也加固了车头的刚性。

在这个电动车自燃的高发季节里面,电池的安全值得大家关注,不只是电动车的车主,潜在消费者更应思考,满足续航里程的时候,是否也要知道它的安全性能呢?虽然丰田C-HR EV的续航里程和电池的冷却方式与主流不同,但在安全层面却更深思熟虑。对于电动车还是新兴事物而言,保守又何尝不是一种理智的选择呢。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

液冷散热是什么意思?

首先应该知道制冷片的电参数,一般的半导体制冷片都是直流12v供电,负载电流在4~6A,所以要有功率足够的12V直流电源给制冷片供电。通电后制冷片会一面制冷一面加热,电源极性对调后冷热面也同时会对调。

使用的时候必须给制冷片的两面都有充分的散热,一般用铜或铝块贴紧并用风扇散热,否则两面间温差过大会很快变成两面同时发热,继而损坏制冷片。

捷达电子扇转个不停是什么原因

所谓的液冷散热是指使用液体取代空气作为冷媒,为发热部件进行换热,带走热量的技术。目前液冷技术主要有三种部署方式,分别是浸没、冷板、喷淋三类方式。

一、浸没式液冷散热:

将发热元件直接浸没在冷却液中,依靠液体的流动循环带走服务器等设备运行产生的热量。浸没式液冷是典型的直接接触型液冷。由于发热元件与冷却液直接接触,散热效率更高,噪音更低,可解决防高热谜底。浸没式液冷分为两相液冷和单相液冷,散热方式可以采用干冷器和冷却塔等形式。

两相液冷散热

冷却液在循环散热中发生相变。两相液冷传热效率更高,但控制相对复杂。相变过程中压力会发生变化,对容器要求高,使用过程中冷却液易受污染。

2.单相液冷散热

冷却液在循环散热过程中始终维持液态,不发生相变,故要求冷却液的沸点较高,这样冷却液挥发流失控制相对简单,与IT设备的元器件兼容性比较好,但相比两相液冷,其效率较低。根据实际应用场景,可采用干冷器或冷却塔散热。

二、冷板式液冷散热:

将液冷冷板固定在服务器的主要发热器件上,依靠流经冷板的液体将热量带走达到散热目的。冷板液冷解决了服务器里发热量大的器件的散热,其他散热器件还得依靠风冷。所以采用冷板式液冷的服务器也称为气液双通道服务器。冷板的液体不接触被冷却器件,中间采用导热板传热,安全性高。

三、喷淋式液冷散热:

在机箱顶部储液和开孔,根据发热体位置和发热量大小不同,让冷却液对发热体进行喷淋,达到设备冷却的目的。喷淋的液体和被冷却器件直接接触,冷却效率高;但液体在喷淋的过程中遇到高温物体会有飘逸和蒸发现象,雾滴和气体沿机箱孔洞缝隙散发到机箱外面,造成机房环境清洁度下降或对其他设备造成影响。

半导体制冷片的寿命

怠速正常时,扇狂转,有几种情况:节温器坏了,冷却液不足或系统有空气,水泵,水箱堵塞,水温传感器,空调压力传感器。

将迅猛直前的动力快感,升华为收敛自如的从容操控。捷达搭载全面创新的动力总成,点滴油耗尽释强劲动力,可瞬间触发您的驾驭激情;驾驶路感平顺清晰,增添无限操控乐趣;出色的静音降噪设计及自动恒温空调,营造舒适惬意的驾乘享受,卓越的驾乘体验,让您爱上活力之旅。

扩展资料:

散热器种类没有严格的定义,也没有严格的分类方法。通常根据散热器加工方法、冷却方法、专业用途、使用材料、使用功率、散热器特点等分类。

(1)按加工方法分。有插指形散热器(板料冲压成型)、型材散热器(挤压成型材)、插片散热器、铸造散热器等。

(2)按冷却方法分。有自然冷却散热器、风冷散热器、液冷散热器(水冷散热器、油冷散热器)、冷板散热器、热管散热器等。

(3)按专业用途分。有功率器件散热器、模块用散热器、电阻散热器、变频散热器、机箱一体化散热器、电机机壳一体化散热器、电焊机散热器、电源散热器、显卡散热器、IT散热器等。

百度百科-捷达

其实,一定要基于一定条件去谈论可靠性。

一冷科技热电半导体制冷器的可靠性的研究

1介绍:由于热电制冷器是固态为基础的构造,所以,一般认为热电制冷器具有很高的可靠性。在大多数应用条件下,热电制冷器件均可以为您提供长期无故障的服务。目前,在很多具体的实例中,热电制冷器的持续工作时间都超过了20年,并且热电制冷器的寿命比相关仪器的寿命都要长。然而,因为失效率与应用环境是密切相关的,实际中想要得到具体的热电制冷器件的可靠性仍然是比较困难的。对于一些相对稳定的制冷应用条件下,在制冷器上加载的直流电源非常稳定而且基本上不会间断,此时热电制冷器的可靠性会非常的高。平均故障间隔时间(MTBFs)一般会超过2000,000小时,一般以这种情况下的平均故障间隔时间作为工业标准。而另一方面,在涉及到冷热循环工作的应用条件下,平均故障间隔时间就会大大缩短,特别是当热电制冷器在循环过程中温度会升高到较高温度时。

一般来说,公布热电制冷器的可靠性数据是非常困难的,因为在实际应用中的很多应用条件和工作参数会影响到最终的结果。所以,可靠性数据只有对于与测试环境相似的应用环境来说是有效的,对其他应用情况来说并不一定适用。如制冷器安装和焊接工艺,供电电源和温度控制系统及相关技术,温度控制等因素,与外部环境相结合将会极大的影响失效率,使其发生大范围的波动。为了给用户提供有关热电制冷器寿命的基础数据,并且为相关工程人员在设计优化制冷器可靠性的过程中提供帮助,我们设计了若干制冷器的可靠性试验来获取所需的可靠性数据。这里列出了几种应用条件下的测试结果和数据,可以为在相似的条件下使用制冷器的最终消费者提供帮助。为用户提供这些数据时,要根据不同的应用环境和用户需求进行选择。

对热电制冷器安装过程的一些大体要求,可以在本手册的第六部分找到。为了尽量减少错误的安装过程会对制冷器可靠性带来影响,所有制冷器的安装过程必须遵守手册上提到的要求。在安装过程中影响制冷器可靠性的因素主要有以下几点:

a) 热电制冷器在压力条件下具有很高的机械强度,但是其剪切强度相对来说比较低。因此,一般不可以将热电制冷器设计在承载主要支撑的机械结构体系中。此外,在可能会涉及到振动和冲击的应用条件下,热电制冷器最好是在安装时保持适当的压力,也就是使用螺钉夹紧的方法。对于热点制冷器来说,只要使用适当的安装方法,就可以成功的应对如飞机,军事或相似环境下出现的振动或冲击环境。

b) 尽管热电制冷器的最大建议压力载荷是每平方厘米15千克 (每平方英寸200磅),但是在测试过程中,大多数制冷器都可以承受超过每平方厘米15千克(每平方英寸200磅)的压力载荷而不造成失效。最重要的是需要保证制冷器的安装方法是选用螺钉夹紧固定的方法,并且安装过程中保持了适当的压力,这样制冷器不会在很小的侧向力下就容易松动进而引起移动。如果在同一个制冷器中需要固定若干对温差电偶对的话,松动的部件将引起很大的麻烦。这种情况下,如果安装过程中,夹具的压力不够,就可能引起制冷性能的降低甚至制冷器的提前失效。如果使用多级制冷器阵列式安装,建议使用高度公差为±0.025 mm的制冷器。在任何情况下,必须保证夹具压力的均匀施加,并且要求表面必须平整(具体安装指导请参见第六部分)。

c) 为了避免受到明显的机械振动而引起的制冷器失效,尽量不要在制冷器的冷端面上放置没有支撑的大质量器件。如果需要涉及到质量很大的物体,最好使用夹具将热电制冷器紧固在散热器和物体之间,或者先将器件装夹在一个可作为介质的冷板上。此时,夹紧螺钉可以有效的增加整个机械系统的剪切强度。

d) 为了避免制冷性能的降低以及对制冷材料可能引起的电化学腐蚀,热电制冷器需要隔绝潮气。当温度降低到露点以下时,为了避免水汽渗入制冷器内部,应该安装有效的防潮密封保护。这层防潮保护层应该围绕着热电制冷器安装在散热片和被冷却物体之间。电子级RTV硅胶可以直接用作热电制冷器的防潮保护层。使用可变形的闭孔泡沫绝缘胶带或薄片材料,适当的结合RTV来填充空隙,就可以用来在被冷却物体和散热器之间形成保护层。

e) 如果器件的工作条件中需要涉及冷热循环或者很大的温度变化,此时制冷器的安装方法不可以使用焊接或树脂胶粘结的方法,因为这两种方法都需要在制冷器上进行刚性连接。一般情况下,刚性连接会导致大量的热应力,从而引起制冷器的提前失效,除非所有元件的热膨胀系数都非常接近。由于制冷器热端面上的温度一般比较恒定,在制冷器热端面上的刚性连接一般影响比较小。如果工作条件中需要涉及明显的温度变化或者冷热循环,我们强烈建议使用如导热硅脂,石墨片等安装材料,或者金属铟的螺钉夹紧方式对制冷器进行安装。此外,如果在制冷器两端都进行了刚性连接,这种制冷器尽量不要使用在大于15 mm2的器件上。

另外,温度控制方法同样也会影响热电制冷器的可靠性。如果想要延长制冷器寿命,一般建议选择线性或等比例的温度控制方法,而不是ON/OFF开关方法。

2 高温下制冷器的可靠性

热电制冷器的失效一般分为两种:早期失效和性能衰减。性能衰减一般是在长期使用之后由于半导体材料性能参数的变化或者接触电阻的增加所引起的。长期在高温下使用会引起半导体材料性能参数的变化从而降低制冷器的制冷性能。为了研究这个效应对性能的影响,我们做了一个测试。使用一冷科技的95-系列热电制冷器,在空气中持续的高温(150 ℃)环境下工作。在测试过程中,定时测量和记录材料的相关性能参数。在测试中,使用最大温差(DTmax)来表示制冷器整体制冷性能。在42个月的时间内,我们跟踪记录这个参数,将平均值列在图10.1中。我们可以发现,在高温条件下暴露12个月后,最大温差有少许(2.5%)降低。而在接下去的30个月中,由于半导体材料趋于稳定,最大温差只继续降低了1.3%。

图10.1

3 冷热循环过程中的制冷器可靠性

将热电制冷器在很宽的温度范围内进行持续的冷热循环,可以看成是对制冷器进行可靠性测试,特别是在循环过程中将制冷器的热端温度升高到很高的温度。与绝大多数应用条件相比,这种运行方式都会引起更高的失效率。大部分热循环失效的根源是制冷器中热电材料与其它部件的热膨胀系数的不匹配,这是完全不可避免的。这种失效一般表现为早期失效,而有时也会在失效之前观察到性能衰减。

为了研究冷热循环对制冷器性能的影响,首先,我们需要定义冷热循环。在许多热电器件的工作环境中都需要涉及到周期性的升高和降低温度,而有时这种循环会在很宽的温度范围内进行。尽管循环和非循环的工作条件之间的界限不是很明确,但是一般情况下我们将这种在很长一段时间内,温度有规律并且持续性的升高和降低的工作条件称为冷热循环。这种循环的工作条件一般趋向于自动化或者机械控制温度而不是人工控制。如果器件的温度每天只升高和降低几个循环,我们一般不会将这个作为循环工作条件来进行讨论。如果您对具体需要的工作条件的状态不是非常确定,请及时咨询我们的服务人员。

在冷热循环过程中的失效率至少与四个因素相关:(1)总的循环次数;(2)循环过程中总的温度变化范围;(3)循环过程中的温度上限;(4)温度变化的速率。当循环次数很少,温度变化范围很窄,温度上限相对较低并且温度变化很慢时,可以获得最高的可靠性和较长的制冷器寿命。(相反,在很宽的温度范围内,温度变化速率很高时,进行大量的循环,并且循环过程中温度最大值较高时,将会大大缩短制冷器的寿命)。需要注意的是,制冷器的绝对寿命大大依赖于总的循环次数,而不是进行这些循环所需要的总时间。所以,当讨论热循环时,平均故障间隔时间的单位使用循环次数表示而不是小时;我们将使用平均故障间隔时间来进行下面的讨论。

在冷热循环中使用的制冷器型号也会很大程度的影响失效率。最大使用温度较高的制冷器相对于最大使用温度较低的制冷器来说,具有更长的使用寿命。这个规律即使对于冷热循环中的最高温度远远小于制冷器的最大使用温度时也是适用的。在一个涉及到双级热电制冷器的应用中,制冷器在-55 ℃到125 ℃之间循环,一个最大使用温度为150 ℃的制冷器的平均故障间隔时间为8100次循环,而最大使用温度为200 ℃的制冷器的平均故障间隔时间为17500次循环。最大使用温度更低的制冷器只能使用在更低温度的热循环应用中。总之,我们建议在超过90 ℃的热循环应用中使用TECooler HT系列(最大使用温度为200 ℃)制冷器。

在超过90 ℃的热循环应用中使用TECooler HT系列(最大使用温度为200 ℃)制冷器。

这里需要指出,还有另外两个因素同样也会影响热循环时的平均故障间隔时间。体积较小的制冷器拥有较少的热电偶对,所以与体积较大的制冷器相比,其使用寿命较长。而在体积较大的制冷器中,热-机械应力更大,而且这种制冷器一般有比较多的热电偶对,这将增加焊接点在热应力下失效的可能。大量的数据表明在冷热循环过程中,尺寸小于或等于30 mm2的制冷器与体积较大制冷器相比,具有更高的可靠性。

为了更好的定义在高温冷热循环条件下的制冷器失效率,我们使用TECooler HT系列制冷器长期进行了一个测试, 制冷器在30 ℃到100 ℃之间循环。制冷器被安装在一个强制对流式散热器上,并且包覆了一层绝缘铝板。通过交替改变加载直流电源的两极来使器件制冷和加热。通过测量盖板上的温度来测量循环极限。每次循环时间是5分钟 (2.5分钟从30 ℃到100 ℃,2.5分钟从100 ℃到30 ℃),所以一天288次循环,一个星期2016次循环。每星期测量一次制冷器的性能参数,突然的电阻增加表示失效。

与预期相同,制冷器的电阻首先缓慢增加,直到某一点上电阻忽然快速增加,表示发生了失效。如图10.2所示,所有的制冷器在失效前至少进行了25000次循环,然后继续测试直到50%的制冷器失效。计算出这组制冷器的平均故障间隔时间是68000次循环。这里我们仍然需要注意,制冷器的安装方法和安装过程中的所有细节,对于制冷器在冷热循环在工作条件下的应用来说都非常重要。另外,5 ℃到95 ℃之间热循环的测试显示其平均故障间隔时间是100,000次循环。

图10.2

在结束这个章节之前,我们需要提到热循环过程的一个实际应用。由于在工作过程中,热电制冷器内部会产生热-机械应力,此时,冷热循环可以被看成是一个有效的筛选技术。通过将热电制冷器置于一个精确控制的循环过程中,可以筛选出具有潜在缺陷的制冷器,从而降低早期失效的可能性。当然,这种操作可能会增加成本,但是在需要高可靠性的情况下还是非常有必要的。

4ON/OFF开关循环试验

前面提到工业上接受的标准热电制冷器的平均故障间隔时间是至少200,000小时。这个平均故障间隔时间是以相对稳态的制冷器运行条件为基础的,在工作时,系统电源只是偶尔打开或切断(每天几次)。而在另一些应用条件下,电源会被频繁的开关,特别是在恒温温度控制器的应用中。我们使用TECooler HT系列制冷器进行了一次测试,来研究相对恒定的温度下ON/OFF开关式电循环对制冷器的影响。使用导热硅脂将制冷器安装在一对强制对流式散热器之间。电流加载时间为7.5秒,断开时间为7.5秒,所以一个电循环的时间是15秒。循环过程中,监控每一个制冷器上的输入电流,由于制冷器电阻增加而引起的电流降低是制冷器失效的标志。测试进行大约25000个小时,至少6百万次循环。在这种条件下计算出来的平均故障间隔时间是125,000小时,或者说3*107次ON/OFF开关循环。

注意:大多数传统的恒温器本身具有更大的开关温度差,这样会建立一个明显的冷热循环,其中热电制冷器上的温度会在较高和较低的温度极限之间变化。由于我们已经知道,冷热循环会降低热电制冷器的使用寿命,所以在要求高可靠性的应用条件下,不推荐使用传统的ON/OFF开关式恒温温度控制系统。

5 环境测试

热电制冷器经常被安装在有振动、冲击或另一些潜在的不利环境中。在前文曾经提到,制冷器可以承受适当的压力但是其剪切强度相对较弱。当热电制冷器被适当的安装在一个机械部件中时,它们可以承受适当的机械应力而不产生失效。

一冷科技提供的制冷器已经成功的应对了大量的环境/机械测试条件,而没有发生失效。具体的测试条件包括:

高温运行和存储:150°C下30,000多个小时

低温运行和存储:-40°C 下1000多个小时

热循环:

(a) 100 ℃(15 sec)/ 100 ℃(15 sec), 10个循环

(b) 150 ℃(5 min)/ -65 ℃(5 min), 10个循环(c) MIL-STD-(c) MIL-STD-202,方法107

TECooler HT系列制冷器:-55 ℃到+85 ℃

机械冲击: (a) 100 G, 200 G, 26 msec; 500 G 1000 G @ 1 sec ,3个方向,每个方向上3 次冲击

(b) MIL-STD-202,方法213,测试条件I

振动: (a) 10/55/10 Hz,1分钟循环,9.1 G, 3个方向,每个方向上2小时204A,测试条

件 B, 最大15 G

6 质量控制流程

每个热电制冷器件制造商都具有完备的质量控制和测试流程,以确保产品符合公布的规范,并且能代表标准的工艺。尽管工业上并没有太多正规的标准,但是许多主要的热电制冷器件制造商还是会使用某些特定的标准。然而,如果用户对产品上可能影响应用的质量相关问题有任何疑问,请及时与相应的热电制冷器件制造商进行咨询。

一冷科技的测试和质量流程经过多年的使用,具有丰富的工业生产经验,覆盖了热电制冷器工作中将遇到的很宽的应用条件。整个流程包括几个主要方面,如产品运输前100%的电学和机械性能测试/检查;在使用过程中100%检查。

7结论

在前面的讨论中,我们强调了热电制冷器的可靠性与应用条件之间的依赖性。通过遵循一些基本规则,并且了解一些特定的因素是如何影响制冷器的使用寿命,设计者有可能延长系统的使用寿命。尽管一些设计者可能期望进行一个复杂的分析,建立起所有相关参数的模型,但是许多用户更倾向于在遇到一些特殊要求或非传统布局时,可能会寻求一些经验主义的方法来计算他们特定应用条件下的制冷器可靠性。